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Abstract—The fundamental natural frequencies and buckling loads of a rectangular plate with
nonlinearly rotational restraints are obtained by using the finite element technique. If the rotational
springs are unsymmetric the iterative scheme must be employed to acquire the solutions of the
nonlinear problem. The values which describe the free vibration and stability behaviour of the plate
will increase when either the parameters of rotational spring or the initial rotational angles increase.
Incidentalily, it can be concluded that these results grown nonlinearly with respect to either the linear
or nonlinear rotational spring constants. Finally, both the frequency and stability parameters are
evaluated for several boundary conditions which are quite useful in engineering analysis and design.
© 1997 Elsevier Science Ltd.

1. INTRODUCTION

Investigations on the problem of nonlinear vibration and buckling have been interesting and
challenging. In particular, the vibration and buckling of system with nonlinear boundary
conditions are studied in this study. Although the available literature regarding this subject
is not very large, among others, the following researchers have already contributed to the
development of this field. Hartog (1936) performed the forced vibration analysis in non-
linear systems with various combinations of linear springs. The nonlinear vibration of a
hinged-hinged bar was studied by Woinowsky-Krieger (1950). Paslay and Gurtin (1960)
investigated the vibration response of a linear undamped system resting on a nonlinear
spring. Wah (1964) studied the nonlinear vibrations with various boundary conditions in
which the solution was presented in terms of normal modes. Porter and Billet (1965)
investigated the harmonic and sub-harmonic vibration of a continuous system with non-
linear constraint. Meanwhile, Taucher and Ayre (1965) studied the shock response of a
simple beam on nonlinear supports. Dokainish and Kumar (1971) performed the exper-
imental and theoretical analysis of the transverse vibrations of a beam with bilinear support.
Bhashyam and Prathap (1980) and Sarma and Varadan (1983) used different types of finite
element method, which are Galerkin and Lagrange types, respectively, to analyze the
nonlinear behaviour of beams with simply supported and clamped conditions. Prathap
(1978) studied the nonlinear vibration of a beam with a variable axial restraint. Laura and
Romanelli (1974) used the Galerkin method to investigate the vibration and buckling of
rectangular plates elastically restrained against rotation along all edges and subjected to a
biaxial state of stress. Warburton and Edney (1984) adopted the Ritz method to perform
the vibration and buckling analysis of rectangular plates with elastically restrained edges.
Bennouna and White (1984) studied the effect of large vibration amplitude in the fun-
damental mode shape of a clamped-clamped uniform beam and presented their results on
the fundamental resonance frequency as a function of the amplitude to beam thickness
ratio. Meanwhile, Chi et al. (1984) studied the linear free vibrations of a uniform beam
with rotationally restrained ends subjected to axial forces. The importance of rotational
boundary conditions was experimentally investigated by Picard ef af. (1987). Liu ez al.
(1988) investigated the approximate nonlinear free vibration frequencies analytically for
uniform beams with both ends restrained by rotational springs with different degrees of
restraint. Gutierrez et a/. (1990) used the finite element method to analyze the fundamental
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frequency of vibration of a Timoshenko beam with non-uniform thickness. Also, Rao and
Naidu (1994) studied the free vibration and stability behaviour of a simply supported
uniform beam with nonlinear elastic end restraints against rotation.

In this study, the system considered might be a simple representation of structures
where the range of deflections is such that the motion of the plate can be described by a
linear partial differential equation but the assumption of linear rotational boundary con-
ditions may not be admissible ; in fact, the nonlinear rotational boundary conditions are
considered. The purpose of this study is to analyze the free vibration problem, the free
vibration with initial in-plane stresses problem and stability behaviour of a rectangular plate
with boundaries elastically restrained against rotation. Numerical results are calculated for
both symmetric or unsymmetric restraints. Noting that the iterative scheme is needed when
the rotational springs at both edges are unsymmetric, otherwise the symmetric problem can
be solved without any method for convergence. The solutions to these problems are quite
useful in engineering analysis and design.

2. FINITE ELEMENT FORMULATION

Consider the case of a rectangular thin plate of dimension a x b, thickness A, Poisson’s
ratio v and Young’s modulus E with nonlinear rotational restraints at left edge AD and
right edge BC, as shown in Fig. 1. Due to the nonlinear property of the boundary condition,
the finite element method is adopted to perform the free vibration and stability analysis. In
this study, a simple and efficient finite element is used, as shown in Fig. 2, this kind of plate
finite element contains four degrees of freedom at each of the four corner nodes: w, w,, w,,
w,, Where w is the transverse displacement of the plate, w, = dw/éx, w, = Ow/dy, and
w,, = 0*w/0xCy. It should be noted that with these element displacement functions it was
found that the inclusion of the twist in addition to the displacement and slope at the corner
of an element achieved a remarkable improvement in accuracy of the computed natural
frequencies and mode shapes. Furthermore, the researchers and specialists think that the
fundamental mode always has lowest error when four unknowns at each corner are adopted,
that the modes with at least three nodal lines in one direction always have lower error that
the modes with four nodal lines and the relative position of any mode remains as the
number of elements increase. The rotational spring restraints at both edges are defined as
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My = (w0, p) + 1w (0, ) ()
and
My = (rw,(a, y)+’1RW3(as ») (2

where M, and My are bending moments at left and right side, respectively, (. (g, #1, Hr
are the constants which determines the spring behaviour, respectively.
The strain energy expression for a bending plate is known as

D[ /8*w\? [é*w\ otw\ [OPw *w\?
U == + +2v - +2(1—v dxdy 3
1 Hz [(6x2> (8y3> (é’x:) <6x3> )(3’“‘3}’) j| oo

where D = ER’/12(1 —v) is the elastic rigidity of the plate.
The kinetic energy for a vibration plate in bending with small deflection is

T= %}1 ‘[J(W) 2dxdy 4)

where p Is the mass density per volume of the plate.
In buckling analysis, the work done in a plate element due to the in-plane forces must
be considered and which can be obtained as

Uy = §f[[No(w)? + N.(w,)* + 2N, wow,] dx dy ©)

where N, N,, N,, are axial loads in the corresponding directions, respectively.
Express w in terms of the shape functions N’ and nodal displacements W' as follows

w = [N][W7] (6)

where the superscripts denote the summation of all nodal displacements of the element.
The finite element equation of the problem can be formulated by using the following
Lagrange’s equation :

d /T cU
a(ﬁ)-F%:F,—. (D

The first term on the left of eqn (7) produces the mass matrix [m] and if we combine U,
and U, as the total strain energy U, the second term produces the stiffness matrix [k] and
incremental stiffness matrix [g], it should be noted that if the forces N, N, and N,, are not
constants, the problem becomes more involved. For convenience, we assume the relation-
ship for these forces are mutually proportional to one another, i.e. N, = —4, N, = —c|4
and N,, = —c,4, where ¢, and ¢, are two positive constants and then combine the stiffness
matrix with the mass matrix, the eigenvalue problem will be stated as

{[k] = gl = [m]}[W] = 0 (8)

where  is the natural frequency and 4 is the stability parameter. However, the effects of
nonlinear rotational spring restraints are the goal of this study. The work done in a plate
element due to this restraint at left edge is formulated as
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Us = 3{Myw (0, y) dy
= {0, T + 1 Dr (0,01} dy
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By using the Castigliano’s theorem, the equivalent spring stiffness coefficients of left edge
are

U,

cWiew'

*
i

= LWV N +6n ([NJWD NN dy (10)

Similarly, we proceed to deal with the nonlinear rotational spring restraints at right edge
by the same procedure and then the other equivalent spring stiffness coefficients [k}*] are
obtained. Both matrices [k}] and [k}**] have to be added into the corresponding positions
of the stiffness matrix [k]. Consequently, the resulting matrix equation after assembly can
be derived as

{K(W)]—/[G] —w’[M]}[W] = 0. 1

We can solve eqn (11) by using any standard algorithm to obtain eigenvalues. Noting
that the assembled stiffness matrix contains terms consisting of W because of the nonlinear
part of the rotational elastic restraint. However, as previous discussion, these nonlinear
terms only appear at some corresponding positions of the stiffness matrix. It is sufficient if
one assembles the value of W’ and for this value of W’ the solution can be directly obtained
for a given spring constants of {;, (g, #. and #g.

It is known that eqn (11) can be used to solve several types of problem as follows :

(1) When the incremental stiffness matrix [G] is absent, eqn (11) states a free vibration
problem. Furthermore, the natural frequencies and mode shapes obtained can be used to
treat dynamic response problems of plates using the method of modal analysis.

(2) When the mass matrix [M] is absent, it states a stability problem. The eigenvalues
/ are the buckling loads and [W] are the buckling mode shapes.

(3) When both the incremental stiffness matrix and mass matrix are present, it states
a free vibration problem of plates with initial in-plane stresses.

In order to solve eqn (11), the iteration procedure is needed if the spring constants are
unsymmetrical. This scheme is briefly stated as follows:

(i) At beginning, all values of W in stiffness matrix are artificially set to be zeroes and
then solve eqn (11) to obtain the eigenvalues and eigenvectors.

(ii) Adjust the eigenvector values at left edge to the prescribed values, i.e. all eigen-
vectors are multiplied by a scalar at this stage.

(1)) The values of W in equivalent spring stiffness matrices are updated by the values
which evaluated at stage (ii).

(iv) Add equivalent spring stiffness matrices obtained at stage (i) into some positions
of stiffness matrix.

(v) Resolve the eigenvalue problem of eqn (11) in which the stiffness matrix is updated
and then the new eigenvalues are obtained.

(vi) Repeat stages (ii)—(v) until all the eigenvector values at right edge converge to an
expected accuracy.
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Table 1. Convergence of fundamental natural frequencies vs number of elements

Number of elements

16 64 144 196 256 324 Exact

(A) 62.11 61.92 61.73 61.66 61.60 61.56 61.11
(B) 151.86 65.03 62.48 62.06 61.82 61.59 —
©) 35.06 29.12 29.04 29.03 29.02 29.02 —

(A) is the simply-supported case without restraint.

(B) is the simply-supported case with {=100 (Ib-in/in- ). #=10,000 (lb-in/in-"*)
of case (1).

(C) is the free case with {= 10 (Ib-in/in-"), =100 (Ib-in/in- ) of case (1).

3. NUMERICAL ANALYSIS AND DISCUSSION

In this study, the following parameter values are used for describing the material and
geometry of the rectangular plate: a = b = 144in (3.66 m), h = 3.0in (7.62 cm), E = 10,000
Ksi (6.89 x 10" Nm~2), v = 0.3, p = 41.47 slug ft > (2.14 x 10* kg m*), where a, b, h, E,
v, p are dimensions, thickness, Young’s modulus of elasticity, Poisson’s ratio and mass
density, respectively. The total numbers of finite element is 64. The computer programs are
coded on HP 835/SRX to perform numerical analysis for the problem.

In the first place, a convergence study about the behaviour of the natural frequency
values is presented in Table 1. As it can be seen from part (A) of Table 1, the convergence
of the fundamental natural frequency is justified as the number of the elements is increased.
Although there are no exact solutions available for parts (B) and (C) of Table 1 which have
nonlinear rotational restraints, the convergences of the fundamental natural frequency are
still manifested for the free and simply-supported cases as it can be detected from Table 1.
As to the check of the accuracy of the buckling load, the comparison of buckling loads for
limit cases with the results obtained by other means are presented in Table 2. It should be
noted that the results computed by the present study must be transformed into dimensionless
expressions in order to be compared with the other results. As it can be found from Table
2, the buckling loads for limit cases show a fairly good agreement.

The variation of fundamental frequencies and critical loads of the rectangular plate
are obtained with respect to a few different spring constants at both edges and presented in
the form of tables, respectively, the fundamental frequencies influenced by axial forces are
shown in the form of figures. In this study, the plate with several kinds of boundary
conditions are investigated to illustrate the application of the proposed method, i.e. the
boundary conditions at both edges with nonlinear elastic rotational restraints are assumed
to be simply-supported and those of the other two edges are assumed as the following three
different cases: simply-simply (Tables 3-5), clamped—clamped (Tables 6-8) and free—free
(Tables 9-11). The parameters of rotational springs are denoted by ¢ and #, respectively,
as a symmetric configuration, i.e. {; = {z = { and n, = #x = 5. The unsymmetric spring
constants applied on the plate are presented in Tables 12-14 which the edges without
restraints are assumed to be free—free.

In Table 3, the fundamental natural frequencies for simply—simply case are presented.
The given angle values of case (2) are twice as those of case (1) three times for case (3), etc.
The nodal rotational angles from the left bottom corner to the midpoint of left edge in case
(1) are assumed to be 0.01, 0.088, 0.157, 0.204 and 0.221, in degrees, for simply—simply
case. Incidentally, they are assumed to be 0.0, 0.01, 0.032, 0.053, 0.062 and 0.01, 0.0094,
0.0091, 0.0089, 0.0088, in degrees, for clamped—clamped and free—free cases, respectively.

Table 2. Comparison of buckling loads for limit cases

Timoshenko Laura Warburton
(1961) (1974) (1984) Present study
Simply-supported case 19.739 19.739 20.282

Clamped case 52.310 54.000 52.990 53.432
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Table 3. Variation of fundamental natural frequencies (rad s~') for simply—simply case

Initial rotational angles on left side (degrees)

{(1b-in/in-") n(lb-in/in- ) case (1) case (2) case (3) case (4) case (5)
0 0 61.92 61.92 61.92 61.92 61.92
0 10000 64.90 72.23 80.99 89.15 95.93

10 100 61.97 62.06 62.22 62.44 62.71
10 10000 64.91 72.24 80.99 89.15 95.93
100 100 62.11 62.20 62.35 62.57 62.84
100 10,000 65.03 72.33 81.06 89.19 95.96
Table 4. Variation of buckling loads (Ib in ') under N, for simply-simply case
Initial rotational angles on left side (degrees)

{(Ib-in/in-") n(lb-in/in-"%) case (1) case (2) case (3) case (4) case (5)
0 0 48303 48303 48303 48303 48303
0 10000 52966 64354 76 126 84073 88632

10 100 48375 48522 48 764 49102 49533
10 10000 52987 64369 76 134 84076 88633
100 100 48 588 48733 48975 49311 49741
100 10000 53180 64 507 76207 84109 88 648
Table 5. Variation of buckling loads (Ibin~') under N, and N, for simply-simply case
Initial rotational angles on left side (degrees)

{(Ib-in/in-") n(lb-in/in-"%) case (1) case (2) case (3) case (4) case (5)
0 0 24185 24185 24185 24 185 24185
0 10000 26 546 32645 40096 46 700 51617

10 100 24221 24294 24416 24 586 24803
10 10000 26 557 32653 40102 46703 51619
100 100 24327 24 400 24522 24 691 24908
100 10000 26656 32732 40155 46735 51637
Table 6. Variation of fundamental natural frequencies (rad s ') for clamped—clamped case
Initial rotational angles on left side (degrees)

{(Ib-in/in-") n(lb-in/in-"*) case (1) case (2) case (3) case (4) case (5)
0 0 90.17 90.17 90.17 90.17 90.17
0 10000 90.31 90.72 91.39 92.30 93.42

10 100 90.18 90.19 90.19 90.20 90.22
10 10000 90.32 90.73 91.40 92.31 93.43
100 100 90.27 90.27 90.28 90.29 90.30
100 10000 90.41 90.81 91.48 92.39 93.50
Table 7. Variation of buckling loads (Ib in ') under ¥, for clamped—clamped case
Initial rotational angles on left side (degrees)

{(Ib-infin-") n(lb-in/in- ) case (1) case (2) case (3) case (4) case (5)
0 0 102 308 102 308 102308 102308 102 308
0 10000 102 609 103490 104 883 106676 108718
10 100 102332 102 341 102356 102377 102 404
10 10 000 102630 103510 104901 106 692 108732
100 100 102517 102526 102 541 102 562 102 589

100 10000 102813 103 686 105066 106 841 108 860




Table 8. Variation of buckling loads (Ib in~') under N, and N, for clamped-—clamped case
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Initial rotational angles on left side (degrees)

{(Ib-in/in-") n(Ib-in/in-"%) case (1) case (2) case (3) case (4) case (5)
0 0 45676 45676 45676 45676 45676
0 10000 45813 46220 46 884 47781 48 883
10 100 45687 45691 45698 45707 45720
10 10000 45823 46229 46892 47789 48 891
100 100 45770 45774 45781 45790 45803
100 10000 45905 46311 46971 47865 48962
Table 9. Variation of fundamental natural frequencies (rad s ') for free—free case
Initial rotational angles on left side (degrees)
{(Ib-in/in-") #(Ib-in/in-"") case (1) case (2) case (3) case (4) case (5)
0 0 29.08 29.08 29.08 29.08 29.08
0 10000 29.10 29.17 29.28 29.44 29.65
10 100 29.12 29.12 29.12 29.12 29.13
10 10000 29.14 29.21 29.33 29.49 29.69
100 100 29.51 29.51 29.52 29.52 29.52
100 10000 29.54 29.60 29.72 29.87 30.07
Table 10. Variation of buckling loads (ib in" ') under N, for free—free case
Initial rotational angles on left side (degrees)
{(Ib-1n/in-") 1(Ib-in/in- %) case (1) case (2) case (3) case (4) case (5)
0 0 10641 10641 10 641 10641 10 641
0 10000 10658 10708 10792 10910 11061
10 100 10673 10674 10674 10676 10677
10 10000 10690 10 740 10824 10942 11092
100 100 10961 10962 10963 10964 10966
100 10000 10978 11028 11112 11228 11378
Table 11. Variation of buckling loads (Ibin ') under N, and N, for free—free case
Initial rotational angles on left side (degrees)
{(Ib-in/in-") n(Ib-in/in- %) case (1) case (2) case (3) case (4) case (5)
0 0 10393 10 393 10393 10393 10393
0 10000 10409 10 460 10543 10 660 10809
10 100 10425 10425 10426 10427 10429
10 10000 10441 10491 10575 10691 10840
100 100 10709 10710 10710 10712 10713
100 10000 10726 10775 10858 10974 11122

Table 12. Variation of fundamental natural frequencies (rad s™') for free—free case (unsymmetric)

;L M W;nan (left) SR Hr w;nax (nght) w
(1b-in/in-") (Ib-in/in-"%) (degrees) (Ib-in/in-')  (Ib-in/in-"*) (degrees) (rad s71)
0 10 0.100000 x 10! 0 100 0.999987 x 10~ 29.08
0 10 0.100000 x 10! 100 100 0.999868 x 10~* 29.36
10 10 0.100000 x 10~! 0 100 0.100079 x 10~ 29.10
10 10000 0.100000 x 10! 100 10000 0.986413 x 107" 29.94
100 10 0.100000 x 10! 10 10000 0.100788 x 10~ 29.61
100 10000 0.100000 x 10~" 100 100 0.100821 x 10" 30.03
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Table 13. Variation of buckling loads (Ib in~") under N, for free—free case (unsymmetric)

‘L i Wiax (left) Cr IR W v (right) Py
(Ib-in/in-") (Ib-in/in-"%) (degrees) (Ib-in/in-")  (Ib-in/in- %) (degrees) (lbin™"
0 10 0.100000 x 10~ 0 100 0.999984 x 102 10643
0 10 0.100000 x 10~" 100 100 0.999862 x 102 10755
10 10 0.100000 x 10~" 0 100 0.100087 x 10! 10654
10 10000 0.100000 x 107" 100 10000 0.986409 x 10! 11285
100 10 0.100000 x 107" 10 10000 0.100862 x 10! 10993
100 10000 0.100000 x 10~" 100 100 0.100898 x 10~ 11320

Table 14. Variation of buckling loads (Ib in ') under N, and N, for free—free case (unsymmetric)

&L n Wiy (left) (r R W ax (right) P
(Ib-in/in-") (Ib-in/in-"*) (degrees) (Ib-in/in-")  (Ib-in/in- %) (degrees) (Ibin™1H
0 10 0.100000 x 10" 0 100 0.999982 x 102 10395
0 10 0.100000 x 10! 100 100 0.999842 x 10?2 10515
10 10 0.100000 x 10" 0 100 0.100086 x 10! 10414
10 10000 0.100000 x 10™! 100 10000 0.986398 x 10! 11079
100 10 0.100000 x 10~ 10 10000 0.100873 x 107! 10788
100 10000 0.100000 x 10! 100 100 0.100910 x 10! 11107

It should be noted that if both the values of { and 5 are vanished, the plate will be simplified
to a simply-supported plate all around, it provides us an exact solution to check. The
deviation between the approximate value and analytical result is lower than +1.3% which
is acceptable.

As it can be seen from Table 3, the nonlinear term dominates the fundamental natural
frequencies for small values of ¢ and the initial values of rotational angle. For sufficiently
large values of { (say, {/n > 1) the linear term will govern the free vibration behaviour when
both values of # and W are large. In Fig. 3, the fundamental frequencies of the plate with
elastical restraint for the simply—simply case are plotted against . We assume the values of
initial rotational angle to be those in case (5), axial forces N, are identical to be 2000 Ib~"
in which is less than the critical load. As it can be seen, frequency is nonlinearly increasing
with respect to . The nonlinearity of frequency is more significant for smaller value of .
Table 4 presents the buckling loads of the plate under N, for different spring constants and
different values of initial rotational angle. Table 5 shows the buckling loads when both N,
and N, applied at the same time. Whenever the values of { and # are identical to be zeroes,
it also provides an analytical solution to check the approximate solution, and the result is
acceptable as before. The characters of the buckling load are very similar to those of the
frequency parameters. It can be seen that all values in Table 5 are smaller than those in
Table 4 which is reasonable. As it can be seen from Tables 6-8, either free vibration

Ib
n (F) x 10*

Fig. 3. Fundamental frequency of the plate under axial force N, for simply—simply case.
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Fig. 4. Fundamental frequency of the plate under axial force N, for clamped—clamped case.
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Fig. 5. Fundamental frequency of the plate under axial force N, for free—free case.
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Fig. 6. Fundamental frequency of the plate under axial force N, for simply-simply case.

behaviour or buckling problem, the characters of the results are similar to those of Tables
3-5. Figure 4 shows the relationship between frequency and # is nonlinear if the boundary
conditions are assumed to be clamped-clamped. Tables 9-11 and Fig. 5 show that the free
vibration and stability behaviours of the plate will not be dominated clearly by the nonlinear
restraints, because the stiffness matrix gets smaller when the boundary conditions are
released to be the free—free case. Figures 6-8 present the fundamental frequencies of the
plate against the linear term { of the restraint, also, the axial forces and initial rotational
angles are the same values as those in Figs 3-5. It is evident that the fundamental frequency
nonlinearly increases with { even if the boundary condition is the free—free case. All values
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of the free—free plate are smaller than those of the simply-simply and clamped—clamped
plate which is expected.

Tables 12-14 present the same analysis except the spring constants are unsymmetric.
The columns of {,, {r, 7., ng and W7 are given and the others are evaluated. Noting that
we just list the maximum rotational angle of both edges in these tables and the maximum
value of W1 is assumed to be 0.050 for all cases. The iteration scheme is needed which has
been stated in the previous section. It can be seen that, the rotational angle values of right
edge converge and depend on the spring constants we used. All frequency values and
buckling loads in Tables 12—-14 are quite reasonable if they are compared with those values
of symmetrical cases.

4. SUMMARY

The fundamental natural frequencies and buckling loads of a rectangular plate with
nonlinearly rotational restraints are obtained by using the finite element technique. The
iterative scheme is needed when the rotational springs at both edges are unsymmetric and
the results are quite reasonable. The values which describe the free vibration and stability
behaviour of the plate will increase when either the parameters of rotational spring or the
initial rotational angles increase. Incidentally, it can be concluded that these results grow
nonlinearly with respect to either the linear or nonlinear rotational spring constants. Finally,
both the frequency and stability parameters are evaluated for several boundary conditions
which are quite useful in engineering analysis and design.
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